
NASA/CR- 1998-208424

ICASE Report No. 98-22

Efficient Encoding and Rendering of Time-Varying
Volume Data

Kwan-Liu Ma, Diann Smith, and Ming-Yun Shih

ICASE, Hampton, Virginia

Han- Wei Shen

MRJ Technology Solutions, Moffett Field, California

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

June 1998



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



EFFICIENT ENCODING AND RENDERING OF TIME-VARYING VOLUME DATA*

KWAN-LIU MA t, DIANN SMITH t, MING-YUN SHIH t, AND HEN-WEI SHEN$

Abstract. Visualization of time-varying volumetric data sets, which may be obtained from numerical

simulations or sensing instruments, provides scientists insights into the detailed dynamics of the phenomenon

under study. This paper describes a coherent solution based on quantization, coupled with octree and dif-

ference encoding for visualizing time-varying volumetric data. Quantization is used to attain voxel-level

compression and may have a significant influence on the performance of the subsequent encoding and visual-

ization steps. Octree encoding is used for spatial domain compression, and difference encoding for temporal

domain compression. In essence, neighboring voxels may be fused into macro voxels if they have similar

values, and subtrees at consecutive time steps may be merged if they are identical.

The software rendering process is tailored according to the tree structures and the volume visualization

process. With the tree representation, selective rendering may be performed very efficiently. Additionally,

the I/O costs are reduced. With these combined savings, a higher level of user interactivity is achieved. We

have studied a variety of time-varying volume datasets, performed encoding based on data statistics, and

optimized the rendering calculations wherever possible. Preliminary tests on workstations have shown in

many cases tremendous reduction by as high as 90_c in both storage space and inter-frame delay.

Key words, time-varying data, data compression, hierarchical data structures, volume rendering, inter-

active visualization, distributed computing, scientific visualization

Subject classification. Computer Science

1. Introduction. The ability to study time-varying phenomena helps scientists understand complex

problems. The size of time-varying datasets not only demands excessive storage space but also presents

difficult problems for both data analysis and visualization. For example, a single-variable time-varying vol-

ume dataset consisting of one hundred time steps each of which stores 256 × 256 × 256 floating point numbers

requires over 6.4 gigabytes of storage space.

Ideally, visualizing time-varying data should be done while data is being generated, so that users receive

immediate feedback on the subject under study, and so the visualization results can be stored rather than

the much larger raw data. Rowlan [14] and Ma [9] demonstrate such tracking capability using direct volume

rendering on a massively parallel computer. Some visualization software systems [4, 12] can support runtime

tracking of three-dimensional numerical simulations and they may be operated in a distributed computing

environment. However, runtime tracking is not always possible and desirable for certain applications. For

example, one may want to explore the data set from different perspectives; or, the amount of computation

power required for real-time rendering or a special visualization technique may not be readily available. As

a result, postprocessing of pre-calculated data remains an important requirement.
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97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE).
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FIG. 1. Overall Encoding and Rendering Process.

Several techniques have been developed for visualizing time-varying data as a postprocess. Lane [6]

developed a particle tracer for three-dimensional time-dependent flow data. Max and Becker [11] apply

textures for visualizing both steady and unsteady flow fields. Silver and Wang [17] present a volume based

feature tracking algorithm to help visualize and analyze large time-varying data sets. More recently, Jaswal

demonstrates distributed real-time visualization of time-varying data using a CAVE [5]. He identifies I/O

as the single most constraining factor in the level of interactivity and suggests performing various types of

filtering to reduce the amount of data sent and rendered.

While parallel volume rendering algorithms are available for interactive visualization of large volume

data, visualizing time-varying data on a parallel computer requires reading large files continuously or period-

ically throughout the course of the visualization process. Chiueh and Ma [1] developed a parallel pipelined

renderer for time-varying volume data by partitioning processors into groups to render multiple volumes

concurrently. In this way, the overall rendering time may be greatly reduced because the pipelined render-

ing tasks are overlapped with the I/O required to load each volume into a group of processors; moreover,

parallelization overhead may be reduced as a result of partitioning the processors. They demonstrated that

the ideal partitioning number leading to optimal performance can be determined.

This paper presents a strategy integrating compression and rendering techniques to achieve flexible and

efficient rendering of time-varying volume data. Although volume data compression has been studied by

many researchers [2, 18, 3], very few have considered the additional dimension of time-varying data. With

our strategy, compression is achieved using scalar quantization along with an octree and difference encoding.

By exploiting spatial and temporal coherence in the data, neighboring voxels may be fused into macro voxels

if they have similar values, and two subtrees at consecutive time steps may be merged if they are identical.

A ray-casting volume renderer was restructured to efficiently render the encoded data. With the tree

representation it is possible to perform selective rendering, and when appropriate to distribute both the



dataandrenderingcalculationsto multipleworkstationsto achievedesirableinteraction.Figure1shows
theoverallencodingandrenderingprocess.

Fivetime-varyingvolumedatasetswereusedforourstudy.Weshowhoweachdatasetmaybeencoded
accordingto datastatisticsor user'sknowledgeto achievebetterspaceandrenderingefficiency.Wealso
discusshowto eliminateorhidevariousoverheadsintroducedbyusingthetreerepresentation.Preliminary
testsshowthatin generaltheamountof savingswecanobtaininstoragespaceaswellasin renderingtime
justifiesourapproach.

2. RelatedWork. Thepreviousworkmostcloselyrelatedto oursis thethoroughstudydoneby
WilhelmsandVanGelder[20]on thedesignof hierarchicaldatastructuresfor controlledcompressionand
volumerendering.Theyemendoctreesanda branch-on-need(BON)subdivisionstrategy[19]to handle
multi-dimensionaldata.Thebasisof theirworkisa hierarchicaldatamodelwhichiswelldescribedin their
paper.Theresultingmulti-dimensionaltreestoresamodelofthedataandevaluationinformationaboutthe
errorof themodelaswellasimportanceof thedatato controlcompressionrateandimagequality.They
alsoproposeeightevaluationmetricsforperformingselectivetraversalandvisualizationoftheencodeddata.
Amongtheninedatasetsusedfor theirstudy,sevenarethree-dimensionaldataandtwoaretime-varying
data.

Anothercloselyrelatedworkis theray-castrenderingstrategyintroducedby ShenandJohnson[16]
whichtheycalldifferential volume rendering. By exploiting the data coherency between consecutive time

steps, they are able to reduce not only the rendering time but also the storage space by 90% or more for

their two test data sets which are highly temporally correlated and contain spatially coherent byte data.

Differential volume rendering is potentially parallelizable and a caching technique [10] may be integrated

into the renderer to avoid recalculations for visualizing irregular data.

Although we also use octree encoding and error evaluation for selective traversal, our main focus is on

time-varying volume data (i.e. four-dimensional data.) While Wilhelms and Van Gelder's model treats all

dimensions the same way, we apply difference encoding to the time domain. We especially pay attention

to the quantization step and investigate how quantization may assist subsequent compression and rendering

steps, and influence the visualization results. We develop a rendering strategy favoring a tree representation

of the time-varying data. Examination of the encoded data identifies partial images built from subtrees

which have not changed and therefore may be reused in the following time steps. Finally, in contrast to [16],

we use datasets with distinct properties which are not all highly spatially and temporally coherent in order

to perform a more general study.

3. Compression. Data compression continues to be an important research topic because of its rele-

vance to multimedia and web applications. Many compression techniques have been well studied and may

be applied to new applications according to data characteristics and certain requirements. There are loss-

less and lossy compression methods. Popular compression techniques include huffman coding, scalar/vector

quantization, differential encoding, subband coding, and transform coding [15].

Frequently, scientists demand lossless methods to preserve the accuracy of their original results. However,

when performing data visualization, limited by the display technology and the implementation of rendering

algorithms, degradation in image quality cannot be totally avoided. The questions are then: how lossy can

the compressed data be to generate the highest possible accuracy in the visualization results with the given

rendering and display technology; and how can the errors due to compression be quantified in the data and

the resulting visualization?

Volume data generally come with 8-, 16-, or 32-bit voxels. Most volume renderer implementations use



tablelookupforcolorandopacitymapping.Colorvaluesarerepresented by red, green, and blue components,

each of which is an 8-bit value. The color table thus typically consists of 256 entries of RGB values. For

voxels represented with more than eight bits, quantization must be done which results in lossy compression.

How quantization is done determines what in the data can be visualized.

3.1. Quantization. Quantization is the simplest lossy compression method. The idea of quantization

is to use a limited number of bits to represent a much large number of distinct raw data values. The class of

datasets we consider are typically generated from numerical simulations and quantization of the data results

in a compression ratio of 4 : 1 by representing 32-bit data with only 8 bits. Quantization is a well studied

area. However, the impact of data quantization to volume rendering has not been carefully studied.

There are uniform, non-uniform and adaptive quantizers designed according to the characteristics of the

source data. For the simplest case, that is uniform quantization of uniformly distributed source data values

x, the quantization error may be measured as the mean squared error, which is

M _

(3.1) a2 =- _l _( _ (x 2i--1= -1)_ 2 ¢)2f(x)dx

where M is the number of quantization levels, ¢ = (xmax -xmin)/M and f(x) the probability density function

1 for uniformly distributed source data. While the general principle of quantization is towhich is .... -_m,,

reduce this data distortion error, for visualization tasks, an even more important criterion is to preserve and

enhance particular features in the data. Data values outside the range of interest and the corresponding

distortion error can be ignored. With a given number of quantization levels, enhancement can be achieved

by allocating more levels to a particular range of the source data values. While most renderers use uniform

quantization by defau/t, non-uniform and adaptive quantization can more effectively minimize distortion

error and enhance data for detecting features. For volume rendering to also include an error measure for the

importance of data values, Equation 3.1 becomes

M _(i:1) (X l¢)2f(x)a(X) dx(3.2) 2i-
i=1

where f(x) characterizes a general source data distribution and a(x) is the importance function which in

this case is the opacity transfer function provided by the user.

For example, a simple non-uniform quantizer may use a logarithmic function for source data values

spreading in a wide dynamic range. A more elaborate quantizer may take source data statistics (e.g. the

probability density function) into consideration and set quantization levels adaptively. Figure 2 plots the

minimum and maximum values for each timc step of two datasets. The left one shows values of a turbulence

flow data set that consists of 81 time steps. Such a data set must be quantized with care; otherwise, many

important features in later time steps would become invisible due to the extremely wide dynamic range.

The other data set shown on the right behaves very differently so it can be quantized in a straightforward

manner.

3.2. Octree Encoding. After quantizing, each time step of the quantized data is then organized

hierarchically in its spatial domain using octree encoding. Octrees are a family of data structures that

represents spatial data using recursive subdivision. They have wide application to many graphics and

visualization problems for faster searching, data packing, and algorithmic optimization. Levoy [8] used a

binary octree to skip transparent voxels for efficient volume ray casting. Laur and Hanrahan [7] implemented
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FIG. 2. Left: maximum and minimum values at each time step of a data set from the study of the 9eneration and evolution

of turbulent structures in shear flows. Early time steps contain values in a very large dynamic range which makes quantization

more difficult. Right: maximum and minimum values at each time step of a data set from the study of coherent turbulent vorte_

structures. This data set has a small dynamic range and the distribution of values is quite uniform which makes quantization

straightforward.

a hierarchical splatting renderer using octrees. Wilhelms and Van Geldcr [19] used octrees with a branch-

on-need (BON) strategy for faster isosurface generation, and later extended their octrees and BON strategy

for k dimensions [20] of volume data for controlled compression and rendering, as we described previously

in Section 2.

We use octree encoding to control compression, rendering, and image quality of time-varying volume

data. With octree encoding, immediate neighboring voxels with identical values may be fused to form a

macro voxel. This fusing process is performed recursively either in a top-down or a bottom-up manner

until no more voxels or macro voxels can be merged. For an N-time-step volume dataset, the results are

N octrecs. The amount of compression that can bc achieved with octrec encoding is data dependent. A

data set containing many large, coherent structures usually can be effectively compressed. However, for 8-bit

data, we found that further fusing of voxels based on some error tolerance produced images generally not

acceptable for visualization. Some error control issues are discussed in [7, 20]

Our octree encoding uses a bottom-up algorithm which only visits each data value one time and avoids

recalculating evaluation data and is therefore more computationally efficient. According to our test results,

the bottom-up method is about two times faster than the top-down method. The space overhead of the

octree encoding is generally acceptable as long as many large macro voxels are created. The maximum

overhead is only about _ where v is the total number of voxels in the data and b is the number of bytes

used to store information about each internal tree node. Using a linear octree, it could take as few as 1 bit

for each node to indicate if it is a leaf node or not. We could also store values which characterize the data

such as the minimum, maximum and mean data values. This could be used to optimize rendering.

3.3. Difference Encoding. Like video and speech data, time-varying volume data are highly corre-

lated from time step to time step. Difference encoding uses this fact to predict each sample based on its

past, and to encode and transmit the differences between the prediction and the sample value. Our further

compression is built around this premise. In essence, each individualy octree encoded volume may be par-



FIc.3. MeT_gmgEncoded Trees. Trees at consecutive time steps contain identical subtrees so the second time step only
stores a pointer to the first time step for that subtree (red).

tially merged with the one in the previous time step using difference encoding. The merging is incremental

over the time dimension. Figure 3 shows how a subtree which has not changed may be represented by the

one from the previous time step to save storage space.

The most interesting use of the tree structure is that when animating in the temporal domain we can

waive the rendering of a subtree that has been rendered in previous time step. The image corresponding

to the subtree is retrieved from the previous time step and composited into the final image of the current

time step. The associativity of the over operation [13] for compositing which is also the basis of many

parallel volume rendering algorithm guarantees the correctness of the composited results. The details of the

rendering step will be described in Section 4.

3.4. Optimization. For quantization, the choice of bit allocation can significantly affect not only the

subsequent encoding results but also the visualization results. That is, a particular quantization may result

in more voxel fusing and thus higher compression and rendering rates. After seeing the corresponding

visualization, the scientist may determine that quantization needs to be redone to emphasize a particular

range of data. Consequently, the octree and difference encoding must also be redone. Since data exploration

is an inherently iterative process, we should keep the cost of quantization and subsequent encoding as low

as possible.

When the data for each time-step is very large, I/O cost can be significant and overlapping encoding

and I/O should be implemented. We have also mentioned that certain algorithmic advantages such as using

bottom-up tree construction can make a difference in the overall cost. Finally since most of the calculations

for each time step can be performed independently of other steps, multiple time-step data may be encoded

concurrently by using a cluster of workstations.

4. Rendering. The compression scheme leads naturally Co a rendering strategy in which only modified

data are rendered. We have implemented a ray casting volume renderer, twd-renderer, which takes as input

a sequence of trees, renders the first tree completely and then in subsequent timesteps renders only the

modified subtrees. This requires that partial images representing the unmodified data must be retained and

composited together with the partial images created from the modified data to create the final image at each



timestep.Wedothisbycreatingacompositiugtree.Thecompositingtreeisa pointerbasedoctreewhich
hasthesamestructureasthecompressedoctree.Eachleafofthecompositingtreecontainsapartialimage
rendereddirectlyfromthedatarepresentedbythecorrespondingleafin thecompressedtree.Eachinterior
nodecontainsa partialimagewhichis the compositeof all of its children'simages.At eachtimestep,
modifiedsubtreesin thecompressedoctreeareidentified.A newcompositingbranchiscreatedto represent
thedataandsplicedinto thecompositingtree,replacingtheoldbranch.Theimageat thetopof thenew
branchiscompositedwithits siblingsandall oftheancestorsarerecompositedto reflectthechanges.The
imageattherootof thetreeis thecompleteimage.

Renderingonlythemodifieddataaccountsforthelargestsavingsin thetimedomain.Muchlessdata
(i.e.onlythedifferencebetweenconsecutivetimesteps)isrenderedasaresultoftreemergingwhichproduces
themostsignificantamountofsavingsin renderingcost.In addition,thetimeto readtheencodeddatais
reducedinproportionto thecompressionrate.

However,renderingfromthetreestructureinsteadofdirectlythevolumedataincurscertainoverhead.
To offsetthis overhead,weuseseveraloptimizations,someof whichhavebeendiscussedin [8]. First,we
implementedfront-to-backrenderingto promoteearlyraytermination.Thisoptimizationhasbeentypically
implementedforgeneralray-castingvolumerendering,thoughtheresultishighlydataandtransferfunction
dependent.To reduceexcessivematrixmultiplicationoperations,wecachethecoordinatesof eachrayin
theobjectspace.Wealsotakeadvantageof the informationprovidedbytheoctreestructureto advance
pasttransparentspacewithoutrendering.

Additionally,whenanoctantrepresentingasubvolumehasaconstantvalueeverywherein its domain,
therenderingof thecorrespondingsubvolumecanbe,thoughnotwaived,highlyoptimized.Discretizingthe
volumerenderingintegralequation,theaccumulatedcolorvalueupton sample points on a ray is represented

as:

n i--1

(4.1) C : Z C(i)a(i)II(1 -a(j))
i=1 j=l

For a constant subvolume, since all sample points have an identical data value and therefore identical color

and opacity values, the formulation for compositing can then be simplified to:

c= l-I(1- )
i=x j=l

(4.2) = _ C(_(1 - a) i-1
i=1

With this derivation, we only need to know the number of samples that should be collected along a ray. The

calculations of the sample coordinates and trilinear interpolation of the sample values along each ray can

be completely avoided. The resulting saving is tremendous for a data set containing many large, coherent

structures.

In the octree, each leaf represents a uniform block of data which can be rendered efficiently as discussed

above. However, the boundaries between the uniform blocks must be rendered more carefully. To avoid the

overhead of traversing the tree to obtain boundary values, the data is initially uncompressed and the octree

information is used as a map into the volume data.



(a) (b)

(c) (d)

FIG. 4. Rendering data at various resolution in various space. (a) regular rendering. (b) rendering at lower resolution in

image space. (c) rendering at slightly lower resolution in the data domain which produces about 40_o sarong in storage space

and 10_ in rendering time. (d) rendering at much lower resolution in the data domain which produces about 90_o saving in

storage space and 30_o in rendering time.

Because of opacity accumulation fine details at the front parts of the volume often obscure the back.

This means that when doing front-to-back rendering, subtrees which represent the back portion of the data

may not be completely sampled. As an approximation, we do not re-render the subtrees which have not

changed between time steps.

We can also improve performance by rendering data at different resolutions in different areas of the

spatial domain. Figure 4 displays visualization results generated based on this strategy. Image (a) is a

regular rendering result. Image (b) shows the result of skipping pixels in image space and the blocky pattern

hampers normal perception of the image content. Images (c) and (d) show results from various degrees of

coarsening in the spatial domain. Coarsening was done by fusing voxels with high tolerance values. Image

(c) and (d) are the results of treating a block of voxels identically if the difference between the maximum and

minimum voxel values is under some user-specified tolerance. The resulting savings in both storage space

and rendering time are quite dramatic. We achieve 40% saving for (c) and 90% for (d) in storage space.

Image (c) is almost visually indistinguishable from Image (a). Image (d) is less visually appealing but it is

good for previewing of the data.

The rendering optimization is based on a fixed viewing position. Changing the viewing position requires

that the entire tree be rerendered creating a new compositing tree. To allow the viewer to move randomly

through the temporal domain of the data, a complete tree could be saved at regular intervals.



TABLE 1

Five Test Datasets.

dataset time steps spatial resolution

Turbutlent Vortex Flow 100 1283float

Thermal Convection 101 1283float

Turbulent Jets 150 1283float

Turbulent Shear Flow 81 1283float

Heart Modeling 100 1283byte

5. Test Results. Five datasets were used for our study. Table 1 lists the name and size of each

dataset. The vortex flow dataset was obtained from pseudo-spectral simulations of coherent turbulent vortex

structures. The second dataset derived from a parallel three-dimensional thermal convective model and it

represents the normalized temperature distribution in a closed environment when one side of the volume is

heated by a constant heat source. The turbulent jets dataset was generated from the modeling of naturally

developing and forced jets with rectangular cross-section and different inlet conditions. The turbulent shear

flow dataset was obtained from a study of the generation and evolution of turbulent structures in shear

flows. The heart dataset was obtained from simulating thc electrical impulse conduction in the heart using

an anatomically accurate cellular automation model. The purpose of including the heart dataset is to

compare with previous results [16]. The data consist of the state histories of all the elements in the model

over the duration of the simulation.

Figure 5 presents histograms generated from first four of the five datasets. In each plot, x axis is data

value and y axis is the number of voxels. These plots showing the distribution of data values help the

following discussions. Figure 6 shows one selected frame from each corresponding dataset in Figure 5. Note

that the use of different transfer functions would lead to very different visualization results. For example,

the vortex image here looks quite different from the one in Figure 4.

Table 2 summarizes the encoded results due to different quantizations. The percentage of savings shown

here is relative to the quantized data, not the raw data. The vortex dataset does not include every time step

of the simulation. In addition, the data values spread across the spatial domain quite uniformly. Uniform

quantization brings out most features in the data. However, there is very little temporal and spatial coherence

in the dataset and consequently the compression rate is low. Enhancing a subset of the data values such as

the high values with non-uniform quantization increases the compression rate.

In contrast, uniform quantization does not work very well for the thermal dataset to discern fine fea-

tures in the data. Two nonuniform quantizations focusing on different ranges of values lead to very different

compression performances. We have also experimented with an adaptive quantization method which de-

composes the spatial domain into subdomains and performs local quantization first to encourge voxel fusing

based on local data statistics. We believe this approach will work well for some datasets, though no dramatic

improvement on compression rates were obtained for our test datasets. For the shear flow dataset, although

the second nonuniform quantization method only achieves 40% saving, it helps bring out the most relevant

structures in the data. Finally, the jets dataset is best encoded with the uniform quantization which not

only gives the highest compression rates but also brings out most features in the data.

We found that the quantization error as calculated by Equation 2 is less than 1% for all of our datasets.

The corresponding computational cost for encoding is acceptable. For the test datasets, it takes on average

about 0.5 seconds per time step to quantize and 3-5 seconds to perform octree-difference encoding on a
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TABLE 2

Compression rates derived from different quantizations.

Dataset

Vortex

Thermal

Shear

Quantization

Method

Compression

Percentage

Adaptive

Uniform 18

NonUniform I 71

19

Adaptive

Uniform 43

NonUniform I 28

NonUniform II 98

5O

Uniform 91

NonUniform I -7

NonUniform II 40

Jets Uniform 98

SUN Ultra Sparc. For a dataset containing 100 time steps, it takes about 5-10 minutes to encode the whole

dataset.

As expected, in many cases the rendering rate for a time-varying sequence can be greatly improved by

using the compressed data. All of the timings presented are for an image size of 128× 128. In this section,

when we talk of rendering times, we are referring to the total cost of processing one image. That includes

the time to read the data, to uncompress the data values when necessary, to calculate the gradient, update

the compositing tree, render and composite.

The heart and turbulent jet flow datasets achieved the highest compression rate and the highest increase

in rendering rate. For the turbulent jet flow dataset, the tvvd-rendcrer renders the first image in 2.65 seconds

and the subsequent images at an average of 0.55 seconds, which represents an increase of 80% in the rendering

rate between the first and consecutive images and an 88% increase in the overall rendering rate. For the

heart dataset, we saw a 93% increase in the overall rendering rate.

Figure 7 shows three renderings of the turbulent jet flow dataset. The baseline renderer renders the full

dataset from the volume data at each time step. The tvvd-renderer uses all of the optimizations discussed in

Section 4. The tvvd-renderer without octree optimizations uses the encoded data and builds the compositing

tree, however it renders transparent space and uniform space as if they were nonuniform. Due to the transfer

ftmctions used, the turbulent jet flow dataset has large regions of transparent space and also large blocks

of non-transparent uniform space. This is the best case for octree optimization, but the figure shows that

while some of the speedup is a result of using the octree optimizations, the majority of the speedup occurs

because of the tree merging.

While the rendering rate increases dramatically when the compression rate is high, it is dependent upon

the number of large blocks (4096 voxels or larger) which can be compressed. When a single voxel changes,

the surrounding voxels are re-rendered. Thus, compression resulting from merging 1 voxel blocks or 8-voxel

blocks is not useful at all in the rendering. Compression resulting from merging 64- and 512-voxel blocks has

some effect, but the types of datasets which have many small matching blocks and few large matching blocks

typically require more overhead to use the octree than can be gained by using the compression information.

An example of this is the turbulent shear dataset. Figure 8 shows the rendering times for this dataset

11
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using two different forms of quantization. Figure 9 shows the number of large matching blocks at each time

step. Notice that at time step 30 in the uniform quantization method, the number of 32768-voxel blocks

increases and there is an immediate response in the rendering time. The compression using the nonuniform

quantization method is the result of a large number of small matching blocks, not a small number of large

matching blocks. The renderer is not able to take advantage of the compression and the rendering rate is

consistently higher. Generally, if the data are compressed by less than 50%, unless many large subtrees

were merged, little rendering performance gain can be obtained. This is consistent with the results reported

in [16].

Quantization can be used effectively to focus on different features in the data and can affect the number

of matching blocks at each time step. By choosing the area of interest carefully, a scientist is able to control

not only the level of feature enhancement but also the compression and rendering times of the data. The

thermal convection dataset has interesting features which can be emphasized by nonuniform quantization.

Figure 10 shows the effects of different methods of quantization on the rendering time.

The vortex dataset can also be compressed well with non-uniform quantization, but the compression re-

sults from many small voxel blocks and not any larger blocks. Therefore, although the dataset is compressed,

the rendering time increases.

The core rendering code for our baseline volume renderer is the same as that used for the tvvd-renderer.

It is a very basic renderer with few optimizations. Replacing the core code with a more optimized renderer

will increase the rendering rate of both renderers. The tvvd-renderer can be configured to stop at any depth

in the tree and render immediately. The minimum number of nodes which may be rendered is an 8-voxel

block. Increasing the minimum number of nodes decreases the overhead associated with the octrce but also

decreases the number of matching blocks which do not have to be rerendered. The optimizations which we

have incorporated into the octree renderer such as moving past transparent blocks without rendering and

using front to back rendering to encourage early termination of rays are highly dependent upon the opacity

maps. Using different opacity maps can dramatically change the rendering times. Rendering at 256×256

required approximately two to three times as long. For larger image size or higher interaction, the tree

branches can be distributed to multiple processors to be rendered.

6. Conclusions. Visualization of time-varying data will continue to be important and challenging. We

have investigated how time-varying volume data may be organized to facilitate direct volume rendering and

demonstrated some promising results. In general, the selection of encoding and rendering strategies should

depend very much on data resolution, statistics and visualization requirements.

We found that in many cases the amount of savings in storage space and rendering time can be tremen-

dous while the resulting visualization results stay visually indistinguishable from high-resolution ones. This

suggests that unless the display resolution and visualization requirements are high, we should take advan-

tage of compression and multiresolution rendering to increase visualization efficiency. The savings in storage

space also reduces the I/O required by the renderer. With large datasets over long intervals of time, this

reduction can be a significant part of the overall savings.

Our goal is to increase the users interaction with the data. This requires that the images be presented

to the user as rapidly as possible. Although we do not see large savings when the cost of quantization and

rendering are combined, by preprocessing we can achieve near interactive viewing rates.

Future work includes the development of application-specific techniques and taking the grid structures

(curvilinear, unstructured, etc.) into consideration. We will investigate how the order of encoding calcu-

lations would impact the overall compression and rendering performance. In addition, we will study the
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characteristicsof time-varyingcomputationalfluiddynamicsdatasetsandcontinuedevelopingappropriate
compressionandrenderingmethods.

7. Acknowledgments. The authors would like to thank Peggy Li, John Shebalin, Deborah Silver and

Robert Wilson for the test data sets.

REFERENCES

[1] T.-C. CHIUEH AND K.-L. MA, A Parallel Pipelined Renderer for Time- Varying Volume Data, December

1997. ICASE Report No. 97-70.

[2] W. Z. CHIUEH, C. K. YANG, W. HE, H. PFISTER, AND A. KAUFMAN, Integrated Volume Compression

and Visualization, in Proceedings of the Visualization '97 Conference, October 1997, pp. 329 336.

[3] J. E. FOWLER AND R. YAGEL, Lossless Compression of Volume Data, in Proceedings of the 1994

Symposium on Volume Visualization, October 1994.

[4] R. HAIMES, Unsteady Visualization of Grand Challenge Size CFD Problems: Traditional Post-

Processing vs. Co-Processing, in Proceedings of the ICASE/LaRC Symposium on Visualizing Time-

Varying Data, 1996, pp. 63-75. NASA Conference Publication 3321.

[5] V. S. JASWAL, CAVEvis: Distributed Real-Time Visualization of Time-Varying Scalar and Vector

Fields Using the CAVE Virtual Reality Theater, in Proceedings of the Visualization '97 Conference,

October 1997, pp. 301 308.

[6] D. LANE, UFAT - A Particle Tracer for Time-Dependent Flow Fields, in Proceedings of the Visualiza-

tion '94 Conference, 1994, pp. 257 264.

[7] D. LAUR AND P. HANRAHAN, Hierarchical Splatting: A Processive Refinement Algorithm for Volume

Rendering, in Proceedings of SIGGRAPH '91, 1991.

[8] M. LEVOY, Efficient Ray Tracing of Volume Data, ACM Transactions on Graphics, 9 (1990).

[9] K.-L. MA, Runtime Volume Visualization for Parallel CFD, in Proceedings of Parallel CFD '95 Con-

ference, 1995. California Institute of Technology, Pasadena, CA, June 25-28.

[10] K.-L. MA, M. COHEN, AND J. PAINTER, Volume Seeds: A Volume Exploration Technique, The Journal

of Visualization and Computer Animation, 2 (1991), pp. 135 140.

[11] N. MAX AND B. BECKER, Flow Visualization using Moving Textures, in Proceedings of the

ICASE/LaRC Symposium on Visualizing Time-Varying Data, 1996, pp. 77 88. NASA Conference

Publication 3321.

[12] S. G. PARKER AND C. R. JOHNSON, SCIRun: A Scientific Programming Environment for Com-

putational Steering, in On-line Proceedings of the 1995 Supercomputing Conference, 1995.

http://scxy.tc.cornell.edu/sc95/proceedings/.

[13] T. PORTER AND W. DUFF, Compositing Digital Images, Proceedings of SIGGRAPH '84, 18 (1984).

[14] J. ROWLAN, E. LENT, N. GOKHALE, AND S. BRADSHAW, A Distributed, Parallel, Interactive Volume

Rendering Package, in Proceedings of the Visualization '94 Conference, 1994, pp. 21-30.

[15] K. SAYOOD, Introduction to Data Compression, Morgan Kaufmann Publishers, Inc., 1996.

[16] H.-W. SHEN AND C. JOHNSON, Differential Volume Rendering: A Fast Volume Visualization Technique

for Flow Animation, in Proceedings of the Visualization '94 Conference, October 1994, pp. 180 187.

[17] D. SILVER AND X. WANG, Volume Tracking, in Proceedings of the Visualization '96 Conference, 1996,

pp. 157 164.

15



[18]R. WESTERMANN, A Multiresolution Framework for Volume Rendering, in Proceedings of the 1994

Symposium on Volume Visualization, October 1994.

[19] J. WILHELMS AND A. VAN (]ELDER, Octrees for Faster Isosurface Generation, ACM Transactions on

Graphics, 11 (1992).

[20] --, Multi-Dimensional Trees for Controlled Volume Rendering and Compression, in Proceedings of

the 1994 Symposium on Volume Visualization, October 1994.

16



Form Approved
REPORT DOCUMENTATION PAGE OUB No 0_0Ia8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the O_ice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 1 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I June 1998

4. TITLE AND SUBTITLE

Efficient encoding and rendering of time-varying volume data

6. AUTHOR(S)

Kwan-Liu Ma, Diann Smith,

Ming-Yun Shih, and Han-Wei Shen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

Contractor Report

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 98-22

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1998-208424

ICASE Report No. 98-22

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

Submitted to Visualization '98 Conference

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

13, ABSTRACT (Maximum 200 words)

Visualization of time-varying volumetric data sets, which may be obtained from numerical simulations or sensing

instruments, provides scientists insights into the detailed dynamics of the phenomenon under study. This paper

describes a coherent solution based on quantization, coupled with octree and difference encoding for visualizing

time-varying volumetric data. Quantization is used to attain voxel-level compression and may have a significant

influence on the performance of the subsequent encoding and visualization steps. Octree encoding is used for spatial

domain compression, and diffcrence encoding for temporal domain compression. In essence, neighboring voxels may

be fused into macro voxels if they have similar values, and subtrees at consecutive time steps may be merged if they
are identical.

The software rendering process is tailored according to the tree structure and the volume visualization process.

With the tree representation, selective rendering may be performed very efficiently. Additionally, the I/O costs are

reduced. With these combined savings, a higher level of user interactivity is achieved. We have studied a variety of

time-varying volume datasets, performed encoding based on data statistics, and optimized the rendering calculations

wherever possiblc. Preliminary tests on workstations have shown in many cases tremendous reduction by as high as

90% in both storage space and inter-frame delay.

14. SUBJECT TERMS

time-varying data; data compression; hierarchical data structures; volume rendering;

interactive visualization; distributed computing; scientific visualization

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION ]9. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

_ISN 7540-01-280-5500

15. NUMBER OF PAGES

18

16. PRICE CODE

A03
20, LIMITATION

OF ABSTRACT

i

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std_ Z3g-18

298-102




